
Re-Re-Imagining Early GameMaker 
Assignments in Game Design Studio 1

Jeremy Miles Johnson, Ph.D. 

Mini-Portfolio for Self-Evaluation 

May 2024 

Assignment Revisited from Previous Mini-Portfolio


Abstract:


For the fall semester of 2022, I changed the introductory assignments in Game Design 

Studio 1 to address a specific problem: students were essentially spending the first half of the 

class following tutorials, and as a result, they were doing very little design work. 


In order to make games, students in Game Design Studio 1 must first acquire sufficient 

technical skill in the game engine, GameMaker Studio. Unfortunately, the previous methods by 

which the students were acquiring those skills prevented them from engaging with the design 

process for far too long. In the fall of 2022, I created a new series of assignments that I had 

hoped would address this: The students would spend the first and second weeks of class 

following two tutorials and creating two simple games. For the third and fourth weeks of the 

class, they would create an original game by “mashing up” the two games they had already 

made into a third, original game. The first two weeks of tutorials would give students experience 

in the game engine and provide two games worth of code from which to build. Mashing the 

games up would provide a modest, but unique collection of design problems for each student to 

solve. That was my intention, but the outcomes weren’t great. Students were not able to create 

a unique mashup in the spirit of the assignment. I documented this in my previous Mini-Portfolio, 

“Re-Imagining Early GameMaker Assignments in Game Design Studio 1.” 


1



This year, in the fall of 2023, I created one additional series of tutorials designed to boost 

the students’ core understanding of how GameMaker works. The students first completed these 

tutorials before engaging with the aforementioned tutorial-tutorial-mashup assignment 

sequence. The resulting mashup games were a showcase of well-executed, original designs. I 

presented the results at The Southwest Popular/American Culture Association (SWPACA) 

conference.


The Problems (Old and New)


Game Design Studio 1 is taught at the beginning of a typical Video Game Development 

major’s junior year. Up to this point, the students have built board games and have had some 

exposure to creating video games in simple engines. But, they haven’t yet used a professional-

quality game engine nor tackled video game design challenges in a systematic way. I will refrain 

from too much discussion of the details of those problems, because they are thoroughly outlined 

in my 2023 Mini-Portfolio, but I will give a quick summary.


Professional-quality game engines are complicated pieces of software that require a 

high level of technical knowledge to operate. Additionally, the specific techniques of game 

development—for example, understanding what a state machine is, or how and when to create 

a system manager—are another required set of skills. Finally, solving the design problems of an 

original game requires a third, independent set of skills. It’s possible (and not uncommon) to 

make a class that only teaches the first two skills. I would argue that this is the default for 

YouTube tutorials. But, Game Design Studio 1 is foremost a design class, and so I struggle to 

keep the students focused on design as their attention is pulled to the more immediate 

roadblock of gaining the requisite technical expertise that they’ll need to do anything at all.


In 2022, I changed the first assignments in GameMaker so that the students followed a 

tutorial to create a simple game in a week. They repeated that for a different game the next 

week. For the following two weeks students were asked to iteratively create a mashup game 

using the two games they had already created. It did not go well. Few students had enough 

2



technical skill by the end of those first two weeks to even take a modest initial step into creating 

their own unique combined game. Those who had done sufficient design thinking when planning 

out their mashup game mostly abandoned their clever ideas in favor of simply re-skinning one 

game with assets from the other. This, I think, was a response to how unprepared they felt to 

tackle the challenge of making something original in this way by the third week of the semester. 


The crux of the problem, I think, is that there were three major things for these students 

to learn before they could execute on their own game design. The first is how the game engine 

works. You can learn and apply various skills in any game engine, but every game engine works 

differently, so you have to learn the particulars of how that engine operates. Secondly, 

GameMaker uses a proprietary programming language, GML, which is relatively simple to learn, 

but students must adapt what they know from their coding course(s). Finally, there is the 

problem of learning game development-specific best practices, tricks, hacks, and the like. As an 

example, there is the problem of how to make something fly forever in a space of finite 

dimension like in Flappy Bird. In that game, the bird is forever flying to the right and dodging 

pipes—so it appears, anyway. In reality the bird only moves up and down. It is the pipes that are 

moving from right-to-left, which give the illusion of the bird’s motion. New pipes are created off-

screen on the right, and destroyed after leaving the screen on the left. Game development is full 

of these kinds of specific solutions to common problems. Before they can design, students need 

to have a decent grasp of the game engine, the coding language, and a few of the relevant 

tricks. It would have been a good idea for me to provide at least three major assignments where 

students could focus on each one of these skills in turn before they were presented with the 

mashup. I had only provided two.


A second problem I discovered is that I left the scope of the tutorial content somewhat 

open. I wanted to provide a breadth of choice, and so I included games like Asteroids, Snake, 

Flappy Bird, Frogger, Pac-Man, Centipede and others. While all of those games are simple from 

a modern perspective, games like Pac-Man or Frogger are possibly an order-of-magnitude more 

complex than games like Asteroids or Flappy Bird.


3



Solution Part 1: An Additional Tutorial Series


It was clear that the students needed to spend more time gaining technical skills in 

GameMaker before they’d be able to tackle designing their own games. My challenges were: 1) 

to make a tutorial that focused on a technical skill in game development that most tutorials left 

out, 2) to avoid boring any exceptionally experienced programmers or developers in the class, 

and 3) to tie the tutorial into the rest of the curriculum. I had one additional concern, which was 

to keep from exhausting all my time making game tutorials only to have to make them again 

whenever GameMaker is updated significantly.


My solution was to make one simple, two-part tutorial assignment where the students 

would re-create a “game” (specifically game 2) from Combat for the Atari VCS/2600 as close to 

the original as possible. I did it in the following way: I created a written tutorial rather than a 

video one. In this way, I could revisit and edit it piecemeal as the game engine is updated. 

Previously, I would have to re-create a video tutorial that might have taken 40 hours of work 

because the software had changed enough to introduce significant complications. This happens 


Figure 1 - Two tanks fight in the original Combat (game 2). 


4



surprisingly often. I made this Combat tutorial to serve my own pedagogical needs as well. I 

wanted to help students avoid growing accustomed to just mindlessly following instructions by 

following a recipe. For example, I might I provide an example of code relating to getting input 

and moving in the x direction and then say, “Repeat that process with appropriate modifications 

for the y direction.” In this way, students get specific instruction with examples, but they must 

also digest and understand what I have presented so that they can modify and reuse it 

immediately.


We have an Atari VCS system in Game Lab with the original Combat cartridge. Having 

them re-create this game ties the assignment back to their first class in the major, History of 

Video Games, in which they played this Combat on this console. Having a physical example of 

the game in class also allows me to leave some specifics completely out of the tutorial and let 

the students experiment with the original game to figure things out like what a reasonable 

number for bullet speed would be.


After re-creating Combat game 2, each student would demonstrate what they had done 

to me. After a brief conversation, I would assign a second project, a different ‘game’ from 

Combat. There are 27 game modes, on the cartridge, so this assignment was chosen to 

uniquely suit each student. All games in Combat are similar in terms of the underlying code, but 

they can appear and play very differently. For students who breezed through the first tutorial, I 

would assign a second game that was significantly different from the first. Instead of a two 

player tank fight with guided missiles, they might find themselves creating a game with biplanes 

that never stop moving and who, whenever they leave the field of battle, reenter on the opposite 

side of the screen. For students who succeeded but who struggled, I might choose a different 

tank game that changed some significant aspects from the original. Some of those games 

include having bouncy bullets instead of guided ones, or tanks that are invisible except when 

shooting. Finally, for those students who tried, but were unable to complete the initial tutorial, 

the second game would be little changed from game 2. For example, game 3 is exactly like 

5



game 2, but with a different configuration of obstacles on the field. With an assignment like this, 

students were effectively able to just keep working on the initial assignment.





Figure 2 - Biplanes fight in a 3v1 pattern. This was only  
assigned to those who found the first tutorial very easy.


This was incredibly successful. I measured this in a few ways: 1) All students had 

focused for a week on thoroughly learning GameMaker, which showed in their ability to talk 

about its basic systems, 2) students were getting practice experimenting to find information on 

their own or with the help of their peers, and 3) the second assignment provided an appropriate 

challenge for each student despite their varying levels of aptitude with coding. There was only 

one student for whom this did not work well. The student in question struggled with the written 

tutorial due to severe dyslexia. This student did not submit an accommodation letter, so I had no 

way of knowing. While I won’t return to making the long video tutorials, realizing that there could 

be students who struggle with anything that must be read, will help me watch out for this sort of 

thing happening in the future.


Ensuring that students understood the game engine was a solution to bridging that gap, 

but I still hadn’t addressed the varying levels of tutorial complexity in the mash-up assignment.


6



Solution Part 2: Further Restricting the Allowed Mash-Up Games


In my second iteration of the mash-up assignment, I eliminated Pac-Man, Frogger, 

Centipede, and Maze Craze from the list of allowed games, leaving only Space Invaders, 

Asteroids, Snake, Flappy Bird, and Breakout. Space Invaders is slightly more complex than the 

others, but I warned students, and consequently only the most skilled students attempted to use 

it as one of their mash-up games. Because the students had already had some additional 

development practice in GameMaker, they had a more reasonable understanding of their own 

skill level, and could be trusted to make that choice.


The Outcome


In 2022, when I assigned the mashup without the Combat tutorial, only two students 

submitted projects that met the design goals of the mashup assignment. One did it by coming to 

office hours for help every day—a solution that is not scalable to the entire class—and the other 

did it by taking an incomplete in the course and then completing the assignment after all the rest 

of the classwork.


In 2023 however, I got the outcome I had been hoping for. Every student presented an 

original game that demonstrated a thoughtful design which attempted to solve the problems 

from mashing up two other games.


For the remainder of that semester of Game Design Studio 1, students seemed to tackle 

harder projects and would challenge themselves more than I had seen in previous classes. In 

the next course in the sequence, Game Design Studio 2, the students also seemed to struggle 

less with learning the Unity game engine when compared with previous years. It’s hard to know 

if this collection of changes is solely responsible, but I do think that having a series of positive 

initial interactions with a professional game engine may have helped. This class seemed to to 

more easily embrace the myriad challenges that come with making a game and seemed less 

7



inclined than previous years to opt to sacrifice quality or originality when encountering difficulty. I 

have attached screenshots of most of the games in the Appendix at the end of this document.


Conclusion


By adding two weeks of Combat tutorials at the start of Game Design Studio 1, I started 

seeing the results I have been wanting from this course. The additional series of tutorials on 

Combat did a number of services for this class. First of all, it gave them time to build confidence 

and expertise in GameMaker before having to tackle unique design problems, it tied the first 

game back to previous coursework explicitly, and though I haven’t mentioned it previously, 

Combat is a two-player game, which demonstrated that it is something they can do. Additionally, 

I learned enough of value that I was able to present on my findings at the 2024 Southwest 

Popular/American Culture Association (SWPACA). I will continue to refine the tutorials as 

needed, but after this semester, I think the major work on this course is done for a while. Future 

students will follow this curriculum and I will endeavor to confirm that this structure and that this 

particular class wasn’t just a statistical anomaly. 

8



Appendix - Screenshots of the Student Games


Mash-Ups: Asteroids and Flappy Bird 

9



Mash-Ups: Space Invaders and Flappy Bird 

10



Mash-Up: Asteroids and Snake 

11



Mash-Ups: Asteroids and Breakout 

12


	Abstract:
	The Problems (Old and New)
	Solution Part 1: An Additional Tutorial Series
	Solution Part 2: Further Restricting the Allowed Mash-Up Games
	The Outcome
	Conclusion
	Appendix - Screenshots of the Student Games


