
Re-Imagining Early GameMaker

Assignments in Game Design Studio 1

Jeremy Miles Johnson, Ph.D.

Mini-Portfolio for Self-Evaluation

May 2023

Assignment Reviewed from Game Design Studio 1 VGAM 3330

Abstract:

To teach game design and introductory GameMaker Studio skills early in Game Design

Studio 1, I created a series of assignments where students would first analyze two simple

games and then follow tutorials to make them. For the final phase of the project, students would

combine those two games to create something original and solve the resulting game design

problems. One advantage of this is that the design problems that the students are tasked to

solve present themselves naturally over the course of determining how to make these two

games might blend together. Another advantage is that the students are using with two projects

that they've created as the base, so that should help take this big step. The results from the fall

of 2022 were not what I wanted, but there is still hope.

1



The Problems

GameMaker is the first professional-quality game engine the students are introduced to.

This happens at the beginning of their junior year. Up to this point, the students have built board

games and have had some exposure to creating very simple video games. For example, Robert

Denton Bryant has given a game design assignment in History of Video games where the

students create a game in Scratch, a simplified game engine. Students also tend to make at

least one text game in Beginning Coding for Non-Coders in Python, though not through the use

of any game engine. It is in Game Design Studio 1 where students are first introduced to

working in a full-featured game engine, and because this occurs in the second half of their

degree, there is a real urgency around getting them to a place where they can create original

games as soon as possible.

Like many of the courses I teach, there are multiple, sometimes conflicting goals for

Game Design Studio 1. One fundamental goal is that students spend time thinking about the

design of two-dimensional (2D) games. The other fundamental goal is that students learn to

create original games by doing just that, creating games. The emphasis of this course is not on

how to code well or how to overcome all the fiddly technical hurdles that any game engine

presents. However, I must spend a non-trivial amount of time teaching many of those technical

details so that the students develop skills and knowledge sufficient to create games. Only when

they have a working game can they get feedback, analyze their work, reevaluate their decisions,

and improve their design skills.

To help students become comfortable with GameMaker, I have used a series of tutorials

of some kind. When I have assigned tutorials made by others, I've found that student

enthusiasm tends to be lower than if I create the tutorials. Some students won't do the

assignments at all, and then do not develop the fundamental skills needed to progress in the

class. Another problem is that unless I vet those tutorials extremely carefully, they may teach

2



bad practices or choose a structure that cannot be iterated upon. Even when I take the care to

work through those tutorials, they may no longer be viable the next year. Regardless of their

technical quality, tutorials available on the internet generally provide step-by-step instruction into

the 'how' of making a game, but not the 'why' that goes into each step.

When I provide students with tutorials I have made, student engagement tends to be

much higher, but creating those tutorials is arduous. I have estimated that between planning,

doing the work, debugging the process, redoing the work on camera, and then editing video, it

takes me about 5 hours of work to put together each hour of a game development tutorial. I was

crafting between 6 and 10 hours of video tutorials each semester for this class, which amounts

to an additional full week of work. In the same semester, I tend to have to do about this much

tutorial creation in Advanced Animation each semester. To make matters worse, game engines

change significantly from year-to-year, which frequently requires that I replace all those tutorials

within a year or two. So while students do tend to appreciate those efforts, they don't feel

sustainable for me.

I noticed another issue as well. When a student encounters a problem while following an

online tutorial, they seem much more inclined to try to solve the problem than when they

encounter a problem with a tutorial that I have made. There is an expectation that if I provide a

tutorial, it is self-contained and will work perfectly.

A concern I have with learning by following a tutorial is that video game development

tutorials tend to resemble recipes. When you follow one exactly, you should get the desired

product, but unless you really spend time delving into the 'why?' of each step, at best you learn

how to make that one thing in that exact way. More likely, however, little-to-none of the

information gets converted into usable knowledge. Forget about being able to create something

original; you likely cannot even create that exact thing again without once again following the

recipe.

3



While the students are following tutorials in order to learn the tools, they are doing

virtually no design work of their own. Design requires a problem to solve, and it's often a messy

process. I have been working on a game lately, and I recently made and remade a maze

navigation system four separate times. Each time it worked, but presented a problem that I had

to go back and address, which required iteration. When you don't know the problems you are

solving, you aren't able to design. In fact, most people who make tutorials will secretly do most

of the iteration behind the scenes and present an efficient solution where you take a series of

careful steps directly to a desirable outcome without ever knowing the true process that

determined why that was the desired outcome. And learner's reinforce this. Most will eschew a

messy four-hour-long tutorial that includes all the necessary false starts and revisions in favor of

a snappy thirty-minute tutorial that gets right to the end product flawlessly. Even with these

severe drawbacks, virtually all education in game development involves following tutorials in the

beginning. Despite repeatedly tweaking the early tutorial assignments to include more of the

'why' and show more of the chaos, I wanted to find a better solution.

The Original Assignments

It is important to build a student's familiarity with the game engine and to help them feel

that making a game is something that they can do. I try to give them an early win. Some

semesters I have done this by having them make a game in an extremely limited game engine

called Bitsy. I have also put them right into GameMaker Studio but with a very simple tutorial.

This year (fall of 2022), I started with a Bitsy assignment again, as I did in 2020. This eases

them into the class and gives us a little breathing room to learn some principles before we have

to start learning technical details of a game engine. I mention this now, because by the end of

this mini-portfolio I will decide to eliminate the Bitsy assignment once again in favor of the

simple GameMaker Studio tutorial.

4



The Crux(es) of the Problem

Students need to follow an example of some kind. The majority of students would like a

thorough tutorial that will walk them through every step of creation of a game. A few students

who love programming or are already familiar with GameMaker may find following a meticulous

tutorial to be a slog. It would be nice if there were the possibility for meaningful creativity to be

found in some kind of tutorial assignment.

Students also don't tend to do extra work while following a tutorial. Few take notes or

write their own comments in the code. This means they are less likely to grasp what is going on

while they work, or if they do, they're unlikely to retain that information. Furthermore, if they

revisit their old code and it hasn't been commented thoroughly, it will probably be of little use. If

the assignment explicitly requires the student to reuse this exact code, they may spend more

time putting comments in their code and trying to understand what they're doing as they do it.

Possible Solution: A Mash-up of Two Classic Games

The solution I came up with was to have students choose one simple, classic game from

a list that I provided. They would play the game and analyze it carefully. Then they would follow

a tutorial to make that game as faithfully as they could.

They would then repeat this process for a second game on the list.

Finally, the students would "mash them up" to make a third game with properties of both.

My intention is that the students would have completed two games knowing that they'll need to

revisit them at the end. Since they would be explicitly told that they would be revisiting and

reusing this exact code, they would have a real incentive to comment the code and learn what

they are doing at a deeper level while they follow the tutorials.

The mash-up would provide some space for original game design work. That work would

involve determining what gets included from each of the games, what gets left out, and how

5



exactly to solve all those interstitial design problems that will arise naturally from trying to

combine two games.

As an example, if you were to mash Asteroids and Snake together, you have to answer a

number of important design questions:

● Are you still on a grid like in Snake, or if not will it be too hard not to crash into yourself?

● Do we even still need to keep the idea of crashing into yourself if there are asteroids and

ships shooting at you? Maybe just growing longer is enough.

● Does the screen wrap like in Asteroids, or are there deadly walls like in Snake?

● What makes the player avatar grow longer? Do you collect or "eat" something to grow?

● Can you shoot? If so, can you only shoot enemies and asteroids, or can you accidentally

shoot your "food"? If you do, what does that do?

Two students who choose the same game tutorials might answer these questions

differently and end up with radically different final mash-ups. That, to me, is a sign that the

outcome of this initial get-to-know-GameMaker project is also a true design project.

Once those questions are answered, students must revisit their tutorial games, decide

whether to start from a base of one of the games or to start from scratch. Then they have to get

these two games to work together.

The Games

For each assigned classic game, provided links to gameplay footage of the original

game, a link to play an emulated version of the game, and to one or more GameMaker tutorials

that show students how to create some or all of the game. In some cases not all of these were

available for every game, and there were a few that had no associated tutorials. I advised

students to avoid those unless they already had experience with GameMaker Studio.

6



The list of games and the provided resources:

1. Space Invaders - gameplay video and online play

2. Asteroids - gameplay video, tutorial, and online play

3. Snake - gameplay video, tutorial, and online play

4. Flappy Bird - gameplay video, partial tutorial, and online play

5. Breakout - gameplay video and two tutorials

6. Pac-Man - gameplay video, partial tutorial, and online play

7. Frogger - gameplay video, tutorial, and online play

8. Centipede - gameplay video, development process video (I created this tutorial)

9. Maze Craze - gameplay video, partial tutorial, online play

Design Considerations Even In the Tutorials

In this scenario, students know from the beginning that they are going to have to make

design decisions about their mash-up. That gives them incentive to think seriously about the

design of each individual game. In this way, even when just following a tutorial, students have

additional motivation to think like a game designer. They evaluate core game loops, look for

patterns, examine the 'why' behind each game design choice.

This would prepare students to think about how those core loops interact with one

another. Do they conflict or enhance each other? Are they so close that the result actually

doesn't feel original at all? This can give the student a series of design questions to explore as

they create something original from two thoroughly unoriginal games. This also helps students

to see that creativity is often nothing more than putting two things together in a new or unusual

way.

7



Limitation to Match Original Game

By using well-known classic games and requiring students to reproduce them as

accurately as possible, they were required to study those games closely. The burden of "the

blank page" is lifted from them. If they don't know what to do, they have only to go study what

the original game did. However, they gain an additional burden in that if they are struggling to

get something working, they can't just fudge any old solution. They need to solve the problem.

This gives them concrete goals by which to measure their success and to help drive them

forward.

Approachable Creativity

I wanted students to see that, generally speaking, originality and creativity arise from:

putting two things together in a novel way. Even when putting two extremely simple games

together dozens of interesting design problems can present themselves. In this way, they never

struggle with "the blank page" problem. They are given a series of tasks that are extremely

constrained and yet lead readily to the creation of a unique game. It can also lead to some

silliness, which is always appreciated by the class.

The Outcome

As much as I want to tell you that the experiment went smoothly and everything worked

out well, it did not. Of the 16 students in the class, 4 failed to submit anything for the final

combined game. Another 8 students submitted a game that was only a slight variation on one of

the original two games. There were 4 who mashed up their games properly, and of those, 2

created brilliantly clever final games.

Isabel Rasmussen created a game that was a mashup of Asteroids and Snake. In it, you

flew around dodging and shooting as one does in Asteroids. There were also food pellets to

8



collect, and as you collected those your

ship grew longer. That made it much

harder to dodge asteroids.

Aaliyah Hampton made a mashup

of Flappy Bird and Asteroids in which your

ship flies along horizontally dodging pipes

and "flapping" upward when you click the

mouse. There's actually no flapping

involved, but you do get a burst of upward

momentum and rotation, like in flappy

bird. When you click, your ship also

shoots, which is good because there are

asteroids coming at you amidst the pipes.

You can play Flappy Space here:

https://stedsvgam.com/visu/games/aaliyah_hampton/

So What Went Wrong?

Several factors contributed to a lackluster outcome for this series of assignments. The

first is that not all tutorials are created equal, especially for the simpler games. Some tutorial

creators, particularly those who made tutorials for Snake, realized that one could completely

ignore GameMaker best practices and make a version of Snake that used none of the built-in

systems. While this works if your end goal is simply to reproduce Snake as efficiently as

possible, it made for a version of the game that could not actually be mashed-up with another. In

fact, Isabel Rasmussen was only able to include Snake in her mashup because she spent hours

in my office sorting out the details. In effect, I became her revised Snake tutorial. The Snake

9

https://stedsvgam.com/visu/games/aaliyah_hampton/


tutorial was the most egregious example of this, but wasn't the only game tutorial to do it.

Unfortunately, the Snake tutorial was the shortest one, so it was taken up by more than half the

class. Though I tried to vet the tutorials, I didn't catch this problem. Also several students found

their own tutorials, something that I had initially encouraged, and many discovered similar

problems.

Secondly, not all simple games are comparably simple. Flappy Bird, Snake, Breakout,

and Asteroids have very few objects and systems. Frogger, Pac-Man, and Centipede are

probably an order of magnitude more difficult and time consuming. For example, frogger has

several different zones of the screen that behave differently. At the bottom there are cars, those

cars have patterns. When you get to the river, jumping in the water is deadly. Some logs

disappear, some are alligators, etc. I discovered this while making a shortened Centipede

tutorial for the assignment. Virtually nobody chose any of those options, because the number

and length of the tutorials made the complexity differential clear. The very few who picked the

more complicated games anyway struggled to complete those tutorials in time, and faced a

particularly daunting challenge in mashing up something even so very modestly complex as

Space Invaders with anything else.

Moving Forward

The experiment wasn't a complete disaster. Many students were not properly prepared

to execute the mash-up part of the project when they got to it, but they did still follow two

complete tutorials and did some design thinking in anticipation of the mash-up. Most students

attempted the final stage of the project and had something to present in class. Because of these

things, I surmise that this project was at least as effective as two unrelated tutorials at teaching

skills with the game engine. Furthermore, it presented the students with design challenges to

contemplate, which is rare when following tutorials.

10



Based on the work of those students who were able to successfully complete the final

mash-up, I still think this could be a fun and effective assignment with the following changes:

1. Eliminate the Bitsy game and provide a simple initial GameMaker assignment to build

their familiarity with the game engine a bit more before expecting this of them.

2. Reduce the selection of games to only the simplest ones so that all of the options are

closer in difficulty.

3. With fewer choices, I can take

time to vet the available tutorials

thoroughly to make sure I'm not

setting students up for an

impossible task.

4. If there is no suitable choice, I can

consider making a tutorial myself.

I know that this puts me right back

on that slippery slope, but surely

this time the tutorial will work

forever…

Conclusion

I didn't get the results I was hoping for. I think this was due to a number of errors on my

part. I will attempt a revised version of the assignment with fewer games to choose from. I will

select only the simplest games, and I will vet the tutorials more thoroughly to ensure that they

will result in a code base that is compatible with the other games on the list. Furthermore, I will

limit the students to specific tutorials that I include. If necessary, I may make tutorial content to

cover games for which no suitable tutorial exists. I also plan to remove the Bitsy assignment and

11



replace it with an assignment in GameMaker that is designed to introduce students to the basics

of the game engine. The results demonstrated to me that the students required more scaffolding

to help them develop their knowledge of GameMaker before beginning this series of

assignments. Fortunately, I already have a space for that assignment in the schedule.

12


